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A joint consideration of the basic kinetic equation of DTA (Borchardt-Daniels method) and 
of the mathematical conditions for characteristic points of the DTA curve (Kissinger method) 
results in a system of three equations with three unknowns (kinetic constants). By solving this 
system, one can obtain formulae for the calculation of kinetic constants from any single point of 
the thermoanalytical curve. Rules are given for determining the characteristic and particular 
points in the DTA curve. The concept of the mean heating rate of the sample is introduced and a 
graphical method is described for its determination. The relationship between the fraction 
unreaeted at the characteristic point (the shape of the peak) and the order of reaction is 
established. The dehydration reaction of copper sulphate pentahydrate was studied by the 
gradientless DTA method and good agreement was found between the kinetic constants 
determined with different computation methods. 

The papers by Borchardt and Daniels [1] and by Kissinger [2] occupy a 
particular place in the theory of DTA. In [1] the model of the gradientless sensor of 
the DTA instrument was introduced for the first time into the theory of the method, 
and a practical implementation of this model was developed for liquid samples, 
thereby founding gradientless calorimetry. In [2] the characteristic points of the 
thermoanalytical curve were considered systematically for the first time and the 
possibility of their utilization for kinetic analysis was demonstrated. The above 
papers, however, could not provide a comprehensive view of the fundamental 
theoretical and practical problems of the method, and need further development 
and an increase in accuracy. In particular, the theory of Borchardt and Daniels 
makes use of very many approximations regarding heat exchange conditions in the 
sensor of the instrument and also regarding the nature of the reaction studied, and 
for this reason has limited applicability. The absence of the concept of characteristic 
points in this theory renders it incomplete to a certain extent. As to Kissinger's 
theory, it contains a number of erroneous statements, as will be demonstrated in the 
following. These, however, do not affect the main results and can easily be corrected, 
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558 S H I S H K I N :  R E A C T I O N  K I N E T I C S  

after which it turns out that the two approaches [1] and [2] are not unrelated, but 
can readily be united into a single kinetic theory of DTA. The combined theory 
discussed below is applicable to a sensor with a thermally insulated sample holder, 
approaching in its parameters the gradientless model described in [ 1] and in earlier 
papers [3, 4]. 

The absence of temperature gradients in the sample holder with the sample allows 
a description of the thermal balance of the cell by the equation 

d A H  ~_c d T 
a t  - ~  = - K A T  = - K ( A T B + A T p )  (I) 

d A H  
where--h-T- " is the heat absorption rate of the reaction; C is the overall heat capacity 

d T  
of the holder and the sample; ~ = r is the rate of temperature change of the 

sample; K is the heat transfer coefficient of the cell (a calibration constant of the 
instrument); AT is the differential temperature, equal for DTA without reference 
sample to the temperature change over the thermal barrier of the cell; A T  B is the 
constant component of this temperature change when the linear heating regime is 
reached; and A Tp is the additional temperature, i.e. the deviation of the temperature 
from the linear regime as a result of the reaction, equal to the height of the DTA 
peak. Before the reaction starts: 

A T = A T B = - -  "t '~ 0 (2) 

C 
where z is the time constant of the cell, z = ~ = const.; and ~o is the heating rate of 

the block. During the reaction, A T~i = A TBh =-- z~h, where ~h is the hypothetical heat, 
ing rate of the sample [5]; A TBh is the baseline of the reaction from which the addi- 
tional temperature A Tp is counted. If ~ = const., then ~h = ~o and A'/'nh = -- Zr 

To change over from the rate of heat absorption to the rate of reaction, let as 
assume that 

d A H  = d t t  do~ 
dt ' ~ -  (3) 

where ~t is the fraction reacted (conversion); AH t is the overall heat of reaction. It 
follows from Eqs (1), (2) and (3) that 

= ~o A T  v AHt dot 
z C dt (4) 

Let us integrate Eq. (1) from the start of the reaction to the moment t : 

t ! 

A H  = - K  S A T p d t + C q ~ o t - C  ~ q~dt (5) 
o o 
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o r  

- A H  = KA+CATp (5a) 

where A is the peak area in the DTA curve, and A Tp is the peak height. 
A more general kinetic equation of DTA, than Eq. (5a) can be obtained by 

t 

introducing Eq. (4) into Eq. (5) and expressing the term I A Tp dt in the form 

' i i  - f A rp dt = ~~176 2 ~p dt dt (5b) 

0 0 0 

After the necessary transformations, one obtains 

t t t t 

- A H , ! ~ d t : C ! A T r d t + K t ! A T r d t d t  (6) 

Successive differentiation of Eq. (6) yields 

t 

- AHtot = K J ATpdt 4 CdTp = K A + CA B (7) 
0 

dot = KATp § c dATp (8) 

d2& = KdATp.~ d2dTp 
-  H,-yy dt c (9) 

By integration of Eq. (7) between infinite limits, one obtains 

- A H  t = K A  t (10) 

Equations (7) and (10) allow one to find ~ from the data of the DTA curve: 

KA CAT  (11) 
KAt At 

and the fraction unreacted: 

(l-~t) = K(A , -  A ) - C A  Tp _ A , -  A -  TATp (12) 
KAt At 

Assuming that, similarly to the assumptions in [1] and [2], the rate of reaction is 
described by an equation of the form 

d_~ 
\ / ( - ~ - T ~  (1-ct)" (13) d t =  K~ exp E 
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560 SHISHKIN: REACTION KINETICS 

one finds that 

dc~ 

Ko exp - R-T (1 -~)" 

P (KA )"=' t 

IX(A,- A)- CA 7.3" = B(n) (14) 

Equation (14) can be expressed in a form better suited for further calculations: 

d~ dATp 

Koexp/_E\(l_,)._,=~ R--T) d--[ ATp+~ dt 
1-----~ = A , - A - z A T p  = B (15) 

where the experimental value B is equal to the rate constant of the reaction 
multiplied by the factor (1 -~ )" -  1. By taking the logarithm of Eq. (14), one obtains 

E 
lnB(n) = lnKo-  R--T (14a) 

According to [1], the order of the reaction is found by selecting a value for n at which 
1 

the plot In B(n) versus ~ is represented by a straight line. From the slope of this line 

to the abscissa, one can then determine the activation energy E, and from the inter- 
cept on the ordinate one obtains the frequency factor of the reaction, K o. 

Equation (14) contains three unknowns: E, Ko and n. Besides the described trial- 
and-error method, one may attempt to solve a system of three equations with three 
unknowns of the type of Eq. (14a) for three different temperatures, i.e. three points in 
the DTA curve. If the reaction takes place within a narrow temperature interval, or 
changes its parameters during its course, both these methods may prove 
insufficiently accurate. The optimum method for such cases would be one in which 
the kinetic constants could be calculated for a single temperature, i.e. from the data 
for any single point of the DTA curve. For this purpose one must find two more 
equations, containing the constants sought for and experimeptally measurable 
values which, together with Eq. (14a) or Eq. (15), would form a system of three 
equations with three unknowns. As will be demonstrated below, the missing 
equations can be obtained from the mathematical conditions for the characteristic 
points of the differential curve (Kissinger's method). Let us start our discussion with 
the point of maximum rate of reaction, i.e. the m point. 

Before utilizing the conditions for the m point, we must determine the position of 
this point in the DTA curve. 

In Kissinger's theory it is asserted that the m point is located at the top of the DTA 
peak. However, consideration of this question when the main kinetic equations of 
DTA, Eqs (8) and (9), are taken into account will demonstrate that this statement is 
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SHISHKIN: REACTION KINETICS 561 

erroneous. The authors of [6] also arrived at this conclusions, on the basis of 
analogous analysis. 

Let us perform the construction shown in Fig. 1. The differential curve will be 
represented (with an accuracy satisfactory for the analysis) by the function A Tp 
= sin 7; the origin of the system of coordinates will be located at the inflexion point 

on the initial branch of the peak (i point). Then, dAdtTP - cos 7 and d2Adt zTp _ - sin 7; 

ct6T 
A/dr P AT =sin oI 

d2AT ~ 
dt 2 

Fig. I Idealized DTA curve and distribution of the characteristic poiflts in it: i - -  inflexion point; m 
point of maximum rate of reaction; il and t2 - -  points of maximum positive and negative 
acceleration of the reaction. In the lower part: transformed DTA peak described by Kissinger's 
theory 

the plots corresponding to these functions are also presented in Fig. 1. Let us write 
the conditions for the inflexion point: 

[dATp \ d2ATt, 
(a)~--~)i=max; (b)dt 2 = 0  (16) 

and for the point of maximum rate of reaction: 

Hence, 

(a rn = 

dA Tp 
KAT.+C\ dt }" 

KA~ = m a x ;  (b)\dt~j., = 0 (17) 

A { d2a~ ;ddT.'~ ['d2ATp'~ 
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562 SHISHKIN: REACTION KINETICS 

It is clear from Fig. 1 that Eq. (18) cannot be satisfied in the section of the curve 
dATp d2.4 Tp 

below the i point or at the i point itself, since h e r e - - ~  > 0 and ~ ~> 0 (the sum 

of two positive numbers cannot be equal to zero); also, Eq. (18) cannot be satisfied at 

theppoint, i.e. at the top of the peak, since at this point d :  T ' =  0 , w h i l e ~  <0; 

in contrast, in the section of the curve between the i point and the p point, the signs of 
dA Tp . dZA Tp r 

dt and ~ y -  a e opposite, and Eq. (18) can be satisfied if the values are suitable. 

The exact position of the m point can be found by utilizing Eq. (17a); for this purpose 
one has to construct the relationship between the right-hand side of Eq. (17) and the 
coordinates of the point in the curve; the point where the right-hand side of Eq. (17a) 
reaches the maximum value will be the m point. In an analogous manner one can 
find the points at which the reaction will have maximum positive and negative 
acceleration. For these points, the conditions 

/d2~t\ f d d Tp "~ . f d 2 A Tp Xl . 
m a x  (19) 

A ,  = = m a x  (20) 

must be satisfied. It may be seen in Fig. 1 that the i I point is located lower than the i 
point, while the iz point lies between the p point and the e point, i.e. the end-point of 
the reaction. 

This end-point may be defined as the point at which exponential decline of the 
c u r v e  

begins; in this equation, time is counted from the e point on, since from here on the 
dar t  

equation obtained from Eq. (8) at ~ = 0 is satisfied. The function (2t) is actually 

the solution of this differential equation, and the DTA curve is its graphical 

representation. Thus, Eq. (8) with ~ # 0 is valid up to the e point, whereas after 

this point, Eq. (8) with ~ = 0 is valid; different functions correspond to these two 

equations, and hence at the e point different functions will meet, and the DTA curve 
will have a break in continuity, i.e. two different values for the derivative 
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dA Tp will exist: one for approaching the e point from the right-hand side, and the 
dt 

other for approaching it from the left-hand side: the expression for the first can be 
d A H  

obtained from Eq. (8) at d----~ = 0: 

(dA TP'~e = (22) ATe 
dt ] z 

Consequently, only one inflexion point will appear in the DTA curve. The second 
point, which might appear visually to be an inflexion point, is in fact a particular 
point of the curve: the continuity break point indicating the end of the reaction. For 
this reason, the concept used in [2] for determining the shape index S of the peak is 
erroneous. (The shape index is the ratio of the slopes of the tangents to the curve at 
the inflexion points on the ascending and descending branches of the peak.) These 
tangents should not be drawn at the i and e points, but at the il and i2 points, for 
which the condition used in [2] to find the relationship between S and the order of 

d 3 ~  
reaction n, i.e. ~ = 0, is valid. 

The above analysis demonstrates that Kissinger's error lies in determining the 
positions of the characteristic points in the differential curve incorrectly. It is a 
consequence, in fact, of his using, the form 

dAH 
dt = KATp (23) 

for the DTA equation, and not Eq. (8). However, Eq. (8) can be transformed into the 
form of Eq. (23), and the DTA peak transformed correspondingly. After this, 
Kissinger's theory will become fully applicable to the transformed peak. For this 
purpose, let us write Eq. (8) in the following form: 

d H  dot - a ~ + z  d ~  = aT;  
K dt -dr  

d~T~ 
To findA ~Up, one must add the term ~ y to the height of the peak; the value ofz 

A 
can be taken from Eq. (22) or from the integral form of this equation, z = ~ - ;  the 

..-. - p 

daT. 
term y is found by graphical derivation of the curve. The points i~ and i 2 for 

which the conditions (19) and (20) are satisfied can be used as base points, as well as 
the m point (Eq. 17), the p point, where A :Up = d To, and the e point, where d T'p = 0. 
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564 SHISHKIN: REACTION KINETICS 

By connecting these base points by a continuous line, a peak is obtained (shown in 
the lower part of Fig. 1) whose area is equal to the area of the original peak, but the 
characteristic points m',/'1 and i~, i.e, the points corresponding to the maximum rate 
of reaction and to the maximum positive and negative acceleration of the reaction 
coincide with the peak height and with the inflexion points in the ascending and 
descending branches of the curve, as assumed in Kissinger's theory. 

To obtain one of the equations of the system consisting of three equations, let us 
take the derivative of Eq. (13) and make use of the condition (17b): 

dt 2 - d t  R - ~ - - K  o exp (24) 

RT 2 - Koexp - ~ - ~  n (1 -~ . )  "-1 (24a) 

where a,, is the fraction reacted at the m point at the temperature of maximum rate of 
reaction Tin, and q~ is the momentaneous (true) heating rate of the sample at the m 
point. Joint solution of Eqs (15) and(24a)results in an equation with two unknowns, 
E and n: 

Eq~,, 
RT~ = nB,,, (25) 

The third equation of the system is obtained by integrating Eq. (13). For n 4: 1" 

1 [(  1 ] R T 2 K o e x p ( _ ~ ) ( l _ ~ f  ) (26, 
n - 1  1-~t) "-1 1 = E~ 

where, for integration of the rate constant, the method of integrating by parts 1-7] is 
applied. The value �9 in Eq. (26) is the mean heating rate of the sample in the 
temperature interval studied (how to find it is described in the experimental part of 

2RT 
this paper). Neglecting the term--E--, which is small in comparison to 1, one obtains 

from Eq. (26) for the m point: 

( E ) ( n - 1 ) ( 1 - ~ , . ) " - i  
E~m K~ RTm Bm(n- 1) 

= (26a) 
RT~ 1--(1-a,.)  "-1 1 -(1 --a,.) "-x 

Equations (15), (24a) and (26a) form the desired system of three equations with three 
unknowns. Solving this system for the case q~., = ~,. yields 

n ( 1 - a , . ) " -  t = 1 (27) 
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For reactions of the first order, integration of Eq. (13) yields 

_ ln( l_~t )  RT2 ( E )  
= E~ Ko exp -~--T (28) 

2RT.  
where, as earlier, the small term T is neglected. Joint solution of Eqs (28), (25) and 

(15) at n = 1 yields at the m point 

- l n (1 -~m)  = 1 
and hence 

ct m = 1 - e- i = 0.63 (27a) 

Joint solution of Eqs (27) and (24a) yields at the m point for all values of n 

RT~ = K~ exp RTm (29) 

Equation (27) may be solved for em, but not for n. For this reason, n is found by 
selection or by the plot representing the relationship 

a m = 1-- n - I  

The analysis performed above demonstrates that the m point has the following 
important properties: (a) the fraction reacted at the m point is a function of one 
independent variable only, namely the order of reaction n. For reactions of the first 
order this fraction is equal to the defined value 0.63, i.e. Ctm does not depend on the 
experimental conditions, nor on the reaction parameters; (b) at the m point the rate 

E~m 
constant of a reaction of any order is equal to R-~2; this expression may hence be 

utilized to find the value of the activation energy, by varying the heating rate. By 
writing Eq. (29) for two different heating rates, taking the logarithms of the 
equations obtained and solving them jointly, one obtains 

Tml Tin2 in tPl T22 
q~2 T2t E 

= - -- (30) 
Tm2 - T r a l  R 

In [2] this equation is found in the derived form 

In ~,o 
E 

. . . . .  (31)  
R 
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566 SHISHKIN: REACTION KINETICS 

In [2], Eq. (23) does not appear in its explicit form. It is utilized implicitly in two 

cases: when the author assigns the point of maximum rate of reaction to the top of 
d3~ 

the peak, and when he assumes that at the inflexion point ~ = 0. Equation (23) 

allows one to obtain formulae for the fraction reacted and for the fraction unreacted 
at the point of the curve: 

A 1 At-A'  
(a) ~t = ~-t (b) 1 - ~t = -- A---~--- (32) 

where A' is the area of the transformed peak in Fig. I. It also allows one to obtain an 
equation of the type of Eq. (15): 

( E ) -or)"-1= AT B ' - - =  (33) Koexp - ~ (1 Ap-A'  

Since Kissinger, in [2], did not develop Eqs (32) and (33), he was compelled to make 
use of varying heating rates in order to find E and to introduce the shape index S of 
the peak to find n. Thereby, the possibility of determining the kinetic constants at 
any point of the thermoanalytical curve was lost, i.e. the task of performing kinetic 
analysis by means of this curve was not fully achieved (similarly as in [1], where the 
concept of the characteristic points of the DTA curve is absent). 

The third equation for the system is found by utilizing the mathematical 
conditions for the inflexion point of the DTA curve: 

(dAr,  
(a) \ dt ] '=max  (b) ~, dt 2 ,] = 0  (34) 

From Eq. (9) one has 

d2aT, A, d2ct I dAT; (35) 
dt 2 = z dt 2 z dt 

Introducing Eqs (8), (15) and (24) into Eq. (35) and applying the condition expressed 
in Eq. (34b), one finally obtains 

Eqh _ 1 [- ~ , -~- j i  -I a, 
- - =  T ~ )  ] = (36) RT~ nlJi +-z L A z 

where Bi is the value of B at the i point, and al is the experimental value at this point 
of the expression in brackets. By solving Eqs (36) and (26) jointly, one obtains 

(1 -*tl) " - t  Bi+aiz-1 (37) 
=nB i + ai z- 1 
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and for a reaction of the first order, from Eqs (36) and (28): 

( Bi ) (38) 
1-a~ = exp Bi+aiz_ 1 

Equations (37) and (38) allow one to find the fraction unreacted at the i point as a 
function of the kinetic parameters of the reaction and of the experimental 
conditions. 

The third equation of the system is then found by utilizing the mathematical 
conditions for the top of the peak (p point): 

(a) \ ~ f l ,  = 0 (b) \ ~ , ] .  = max 

(c) \--~]-/, = o 
( d ~ )  d Tp 

(d) ~-  p = A, 

Let us now form the second derivative of Eq. (8) and solve it relative to - -  

(39) 

d3A Tp. 

dt a 

d3A T A t d30t 1 d2A T~ (40) 
d ?  = T d t  3 T dt  2 

The second derivative of Eq. (13) yields 
dat 

dt 3 (1-~)RT 2 

dot 

+ 
~ / \ V ~ - ~ / j  = 

= -d--~L\~-T--~I RT 2 3nB+ 

At the p point, according to condition (39b) and Eq. (40): 

( d3,~ 1 (d2ZlTpX~ 

Utilizing Eqs (35) and (39a), one obtains from Eqs (42), (24) and (15) 

d t a ] , = \ d t 2 ] , z = ~  ~ - ,  

(41) 

(42) 

(42a) 

Solving the equation obtained jointly with Eqs (41) and (39d) yields a quadratic 
equation in the term Eq~/RTp 

T.I - - ~ p  3nnp+ + 2 -  n2B~ + nB.z = 0 (42b) 

3* J. Thermal Anal. 30, 1985 
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and hence 

R T q~ B P ] = 3n+(rBp)-~+_ x/n~-+2n(zBp):l+('rnp)-E+4n (43) 

Ifcpp = tpp, the system of the three equations (43), (26) and (15) can be solved and the 
relationship between the order of reaction and the fraction unreacted at the p point 
can be found: 

(1 --O~p) n - I  = 1 - 2(n- 1) (44) 
3n + (zBp) - 1 + x/n 2 + 2n(rBp) - 1 + (zBp)- 2 + 4n 

For reactions of the first order, let us solve Eq. (43)jointly with Eqs (28) and (15) 
a t n = l :  

l - ~ = e x p  - _ (45) 
3 + (zBp) 1 + ~/5 + 2(zBp)- 1 + (zBp) 2 

A comparison of the formulae for calculating the i, m and p points (Table 1) 
demonstrates that the formula for the m point is simplest, and the formula for the p 
point is the most complicated, i.e. the simpler (more accurate) the characteristic 
point found in the DTA curve, the more complicated (less accurate) the calculation 
for that point. The choice between the various possible calculation alternatives will 
depend on the individual particularities of the reaction studied (the type of the DTA 
curve). 

Experimental 

To confirm our theory, we used as model reaction the dehydration of copper(II) 
sulphate pentahydrate: 

CuSO4.5H20 ~CuSO4.3H20 + 2H20 
CuSO4.3HEO~CuSO4. H20 + 2HzO 

taking place in the above two steps under the chosen conditions. The DTA curve is 
shown in Fig. 2. Heating was carried out at a rate of 12 deg/min in nitrogen 
atmosphere at a pressure of 25-30 Torr. Analytical grade reagent was used. The 
sample (6.0 mg) was placed in a crucible of aluminium foil which was then inserted 
tightly into the sample holder, a thin-walled copper bowl (4.4 • 8.0 mm), to the side 
of which the thermocouple (wire diameter 0.2 mm) was soldered with silver. The 
sample holder was fastened to the thermally insulated wire supports in the cavity of 
the heating block (diameter of cavity 10 mm). The sample was lightly compressed 
onto the bottom of the crucible; it formed a thin layer in good thermal contact with 
the crucible and hence with the sample holder. The holder construction and the 
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packing mode of the sample ensure a high degree ofisothermalness of the sensor and 
centralization of its parameters, so that (from the aspect of the heat transfer theory) 
the sensor may be considered a system without temperature gradient and hence the 
equations derived above are applicable. The heat capacity of the holder with the 
sample, calculated from literature data, is 0.1--O.01J/deg, and the heat transfer 

4 \  / ~  �9 X 
,,,, 

92 

Fig. 2 DTA curve of the dehydration of copper sulphate pentahydrate A - -  peak area; ATp - -  peak 

ddT, h ddT'.  
height; = tan a = - - -  slope of the tangent to the point in the DTA curve; = tan fl 

dt l dt 
a 

- the same for the auxiliary peak 
b 

coefficient of the cell, determined by electric calibration, is K 1 = 4.0__+ 0.1 mW/deg 
C 

at 85 ~ and K2 = 4.3• mW/deg at 115~ hence, z l -  - 2 5  s and 
Kl 

z2---23.25 s. These values are in good agreement with the z values found by 
calculation from the tail branch of the peak in the section sufficiently removed from 
the end-point of the reaction, by the formula 

11.32 A. 
z = - -  (46) 

~T. 

where 11.32 s/cm is the reciprocal chart speed and the meanings of A, and A T, are to 
be seen in Fig. 2. Since ~ ~ const, in the temperature interval studied, the baseline of 
the reaction should be a straight line parallel to the time axis. In fact, as seen from 
Fig. 2, after the reaction the curve returns to the same horizontal line from which it 
deviated at the start of the reaction. 

In agreement with the above equations of reaction, two peaks are observed in the 
DTA curve, in the intervals 70--103 and 103-130 ~ respectively, corresponding to the 
two dehydration steps. The heats of these reactions are 84.8 and 53.0 J/mol water, 
respectively. Both peaks have continuous, rounded-off tops and end-points 
substantially shifted towards the upper part of the tail branch of the peak. This 
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indicates a slow end-stage of the process, proceeding in a significant temperature 
interval; in contrast, the initial stage of the reaction is rapid, particularly in the 
second dehydration step, where the slope of the descending branch is high and the 
temperature interval between the beginning and top of the peak is narrow. The 
dehydration process of the crystal hydrate may presumably be regarded as 
consisting of two stages: in the first, the destruction of the crystal lattice takes place 
(using up energy) and the water molecules migrate to the surface of the sample, and 
partially into the gas phase; in the second stage, desorption of water from the 
surface, i.e. drying, takes place, and the drying process appears extended owing to 
the energetic inhomogeneity of the surface and of the water molecules adsorbed on 
it. 

The results of the kinetic computation and the required initial data are listed in 
Table 2 for a series of points in the curve, in the sequence of rising sample 
temperature. The data listed are: temperature of the sample, height of the peak, 
slope of the peak, area of the peak, momentaneous (true) heating rate of the sample, 
mean heating rate, fraction unreacted, activation energy for n = 1, activation energy 
for n= 1.5, frequency factor, and activation energy calculated by the multipoint 
method, i.e. from Eq. (13) in the linear form 

dct 

dt 
In ~ , ~ ( 1  - p - E/R T+ in K o (47) 

using a programmed computer and the least squares approach. Before discussing 
the results in Table 2, let us consider in greater detail the method of determining the 
mean heating rate ~ figuring in the formulae of the theory (Table 1). 

Mean heating rate ~ and method of its determination 

In integration of the rate constant (cf. Eq. 26), it is accepted usage to consider the 
heating rate a constant value equal to the given heating rate of the block. However, 
the physical meaning of the value figuring in Eq. (26) is not the heating rate of the 
block, but the heating rate of the sample (of the space in which the reaction takes 
place), which for this reason cannot be considered constant. If it is removed outside 
the integral sign, it turns into a mean rate value, which is difficult to determine by 
analytical methods. However, there is no difficulty in finding @ by the graphical 
method described below. 

The integral of the left side of Eq. (26) is a single-value function of ct and 
consequently of the area and height of the peak (cf. Eq. 1 l). The equality (26) will not 
be destroyed if we exchange the peak A (height A Tp) for a peak A' with height A T~ 
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dAT' 
and constant slope ~ -  so as to attain the equality 

Ot -- 
A+zATp A'+zATI, 

A t A~ 

However, for a peak with constant slope one may write 

f~--~)--~-fe-E/RTdt 

(48) 

since the heating rate of the sample for such a peak is a constant equal (according to 
[5]) to 

OAT'p 
~ -  dt +<Po (49) 

To construct the auxiliary peak, a straight line is drawn from the initial point of the 
peak to its intersection with the height (or its prolongation) so that Eq. (48) should 

dAT'p 
be satisfied. Then, the ratio b --- tan a = dt is found and q~ is determined from 

Eq. (49). In Fig. 2, the straight lines from the initial point of the peak are drawn so 
that the areas of the sectors separated by the straight line inside the peak and outside 
it should be equal; then A = A'. Actually, for a more accurate determination of q~ 
one must slightly increase the slope of the straight line to satisfy the equality 48). 

The described procedure can be applied for ideal reactions whose start coincides 
with the direct reaction calculated theoretically by means of the kinetic equation 
with the given values E and Ko. In reality, reactions of the dehydration type start at 
higher temperatures, close to the equilibrium temperature defined by the pressure of 
the gas phase in the calorimeter. As the result of this phenomenon (superheating), 
the initial stage of the reaction proceeds more rapidly and within a narrower 
temperature interval, leading to increased values determined for the activation 
energy. Subsequently, as the temperature rises and the conditions are more removed 
from the equilibrium conditions of dehydration, the process will be described more 
and more by the kinetic equation of the direct reaction and the values determined 
for E will decrease, approaching the true value (cf. Table 2). 

One may, to a certain extent, take into account the phenomenon of superheating, 
and thus increase the accuracy of determining the initial activation energy values by 
drawing the line for constructing the auxiliary peak not from the initial point of the 
recorded peak, but from a point to its left, at the assumed true temperature of the 

dAT~ 
start of the reaction. Thereby, all t h e - - ~  values will decrease and all the ~ values 

will increase (tp-~q~o), and correspondingly all the activation energies will decrease 
(cf. formulae in Table 1). The ~ values listed in Table 2 were determined by this 
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latter method; it may be seen that the greatest differences between tp and ~ appear in 
the initial and final stages of the reaction: in the initial stage tp < 4, and the use of qS 
instead of ~p substantially reduces the higher values of the initial activation energies. 
Comparing the course of changes in tp and qS as the reaction proceeds, one observes 
the tp rapidly decreases to its minimum value at the inflexion point (T~ = 77.3 ~ 
tp~ = 0.081 deg/s), and subsequently increases, whereas ~ slowly decreases up to the 
point of maximum rate of reaction, where tp and qS are very~close to one another, 
and subsequently increases or remains constant. The introduction of the mean 
heating rate concept and the consideration of the superheating phenomenon 
permitted an increase in the accuracy of  the kinetic determinations. However, as 
may be seen from Table 2, even after these corrections the initial values of the 
activation energy remain high, exceeding those of the medium and final stages by a 
factor o f  1.5 to 2. This might be explained either by the incomplete elimination of 
the superheating phenomenon by means of the procedure described, or by assuming 
that the found high values are true ones, characterizing the process of  destruction of 
the crystal lattice of the hydrate, while the lower values of  the subsequent phases are 
related mainly to the process ofdesorption of the water molecules from the surface 
of the sample. 

As may be seen from Table 2, the values of E depend on the value of n, in that with 
increasing n, the value of E also increases, particularly towards the end of the 
reaction, to the extent that the fraction (1-~t) '~ decreases. For this reason it is 
important to determine n as accurately as possible. Hence, the method of finding n 
by means of Eqs (3), (5) and (7) of Table 1 must be rendered more accurate. 

Method of  finding the order of  reaction n, taking into account 

the difference between the true and mean heating rates tp and 

When one cannot assume that �9 = ~, the joint solution of the three-equation 
system of the m point leads to the equality 

tp,~ n i l  - (1  _ ~ . ) . -  1~ 
-- 1 - ~  

tPm n -  1 

By transformation of this equation, one obtains formula (3b) in Table 1. In an 
analogous manner, one can obtain formulae for ~t i and ~tp. Figure 3 presents the 
relationships n versus ~ti, or, and ~tp for the case tp = ~ (curves 1, 2 and 3) and for r # q/i 
(curves 1', 2' and 3'). The values ~ti, ~t, and ~tp were found from the data in Table 2. As 
seen in the Figure, taking into account that tp and ~ are not identical and making 
use of the formulae (3b), (6a) and (8a) in Table 1 results in a shift of the curves for cti 
towards the left, and for ~t, and 0tp towards the right. 

The experimental values for aq, %, and atp are equal to 0.18, 0.57 and 0.74, 
respectively. With these values, n = 1.5 corresponds to the corrected curves for ~t~ and 
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0t.,, and n = 1.37 to the uncorrected curve for atp. In this last case, the introduction of 
the correction into formula (8b) leads to a sharp distortion of the shape of the curve 
and to a substantial shift towards the right. Obviously, formula (Sa) is very sensitive 
to experimental errors, and small errors result in sharp distortion of the shape of the 

n~  

4,0 

3.5 

30  

2,5 

2,0 

1,0 

0.5 

0 

11 2 I 

, i 

0.2 0 . 4 '  0,6 

/ 

08  1 cx ~ 

~_[ , [ , I , I , I , [ 
1 0 8  0.6 0.Z~ 02  0 
(I- (x) 

Fig. 3 Fraction reacted ct vs. order of reaction n for the intlexion point (1, I'), the point of maximum rate of 
reaction (2, 2') and the top of the peak (3, 3'). Curves 1,2 and 3 refer to the case tp = tp, and curves 1', 

2' and 3' to the case q~ ~ 

Table 3 Calculated kinetic data on the dehydration of CuSO4.5H20 at the characteristic points of the 

DTA curve 

E, kJ/mol 
T, ~ B. 103 tp, ~ E, kJ/mol from Eq. (la) Eq. (47) 

First dehydration step 

i point 
m point 
p point 

m point 
p p o i n t  

77.3 8.0 0.081 188.9 (Eq. 7a) 239.1 255.4 
84.0 17.5 0.174 160.9 (Eq. 4a) 158.0 188.1 
88.0 27.8 0.200 160.1 (Eq. 9a) 183A 191.4 

Second dehydration step 

112.6 25.7 0.097 494.1 (Eq. 4a) 476.5 395.4 
115.0 34.5 0.200 203.1 (Eq. 9a) 431.4 341.1 
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curve. Therefore, this formula should be used with caution. All in all, one may state 
that n = 1.5 is the most probable value for the reaction studied. The most probable 
value of E = 38 kcal/mol water for medium temperatures (80-86 ~ corresponds to 
this order of reaction. Table 3 lists the values for E calculated for the characteristic 
points of the DTA curve via formulae (4a), (7a) and (9a), in comparison to the 
corresponding values of E at these points, calculated via the formula for any single 
point of the curve (la) and also via the method of several points (Eq. 47). All in all, 
satisfactory agreement is found between the different values of E, particularly for the 
m point, presumably because at this point the difference between ~0 and ~ is small. 

The single-point method differs from the multipoint method insofar as the 
heating rate tp or ~ figures in all its formulae. Accurate determination of the values 
tp and tp is therefore of primary importance in the utilization of the single-point 
method. Instead of one heating rate, q~o, figuring in the known methods of non- 
isothermal kinetics, a deeper and more accurate analysis demands the introduction 
of three heating rates, differing from one another in general case: ~o o, ~o and qS. 

Relationship between the shape of the peak 
and the order of the reaction 

It follows from the curves in Fig. 3 that with decreasing order of reaction (n~0) the 
difference between ~t,, and ctp decreases (0t,,--,atp), so that at the limit, at n=0, the 
characteristic points of the curve will contract into one point at the top of the peak, 
and the top of the peak will become sharp (the exponential branch of the peak will 
start at the top of the peak indicating the end of the reaction, since at the top of the 
peak ct = 1). Hence, the sharper the top of the peak, the closer the order of the 
reaction to zero, and the more indistinct the top of the peak, the more probable that 
n is in the interval between ! and 2. With increasing values of n, this criterion (the 
distance between the ~, and atp points) becomes less and less sensitive (cf. Fig. 3). 

To summarize, it may be stated that the experiments confirmed the theory 
satisfactorily. This agreement between theory and practice is a consequence of the 
satisfactory agreement of the isothermal sensor used in the experiments with the 
centralized parameters of its theoretical gradientless model. 

References 

1 H. J. Borchardt and F. Daniels, J. Am. Chem. 
Soc., 79 (1957) 41. 

2 H. E. Kissinger, Anal. Chem., 29 (1957) 1702. 
3 Yu. L. Shishkin, J. Thermal Anal., 29 (1984) 105. 
4 Yu. L. Shishkin, J. Thermal Anal., 29 (1984) 503. 

5 Yu. L. Shishkin, J. Thermal Anal., 27 (1983) 113. 
6 R. L. Reed, L. Weber and B. S. Gottfried, 1 and 

EC Fundamentals, 4 (1965) 38. 
7 P. Murray and J. White, Trans. Brit. Ceram. 

Soc., 54 (1955) 204. 

J. Thermal Anal. 30, 1985 



578 SHISHKIN: REACTION KINETICS 

Zusammeafassaag - -  Eine gemeinsame Er6rterung der grundlegenden kinetisehen Gleichung der DTA 
(Borchardt-Daniels-Methode) und der mathematischen Bedingungen ffir charakteristische Punkte der 
DTA-Kurve (Kissinger-Methode) ergibt ein System yon drei Gleichungen mit drei Unbekannten 
(kinetischen Konstanten). Durch L6sung dieses Gleichungssystems werden Formein zur Berechnung der 
kinetischen Konstanten yon einem einzelnen Punkt der thermoanalytischen Kurve erhalten. Regeln zur 
Bestimmung der eharackteristischen und individuellen Punkte der DTA-Kurve werden angegeben. Das 
Konzept der mittleren Aufheizgeschwindigkeit der Probe wird eingefiihrt und eine graphische Methode 
zur Bestimmung dieser Gr6Be besehrieben. Die Beziehung zwischen dem am charakteristischen Punkt 
nicht umgesetzten Anteil (Peakform) und der Reaktionsordnung wird angegeben. Die Dehydratisierung 
yon Kupfersulfat-Pentahydrat wurde mittels der gradientenfreien DTA-Methode untersucht und eine 
gute I~bereinstimmung zwischen den nach verschiedenen Berechnungsmethoden erhaltenen kinetischen 
Konstanten festgestellt. 

Pe31oMe - -  COBMeCTHOe paccMoTpeuHe OCHOBHOUO KHHeTHqeCKOrO ypaBHeHHs ,~TA (MeTO/I 
13opqap~ra-~aHue.abc, a) H MeTaMaTHqeCgHX yc~oBHfi a.a~ xaparrepHLaX ToqeK ~pnsofi ~TA (MeTO~I 
KrlCCHH~Kepa) IIpHBo~tHT ~ CHCTeMe TpeX ypaBHeunfi c TpeM~l HeH3BeCTHhIMH (KHHeTHtleCKHMH 
KOHCTaltTaMH), pema~ KoTopy~o MOXHO HO.rIytlHTh d~opMy~b~ ,a.a~ pacqeTa KHHeTHtleCKHX EOHCTaHT IlO 
~aHHblM ~'!~10~HOfi (.rllO6Ofi) TOqKH TepMoaHa~HTH~ec~ofi rpHno~. ~an~ npaaHJla ~Lqa OllpC~e.rleHH~l 
xapagTepnblx n oco6ofi Toqer na gpnBofi ~[TA. BBeaeao noaaTne cpe~mefi ctopocTn aarpeaaana 
o6pa3ua n onncaa rpa#paaecrafi c~.oco6 ce naxox~leHHa. YcTanon~ena CB~I3b Mex~' ~loaefi pcareHTa a 
xaparTepnofi roare (tI)OpMOfi nHga) n nopaRXOM peaKuna. MeTOROM 6carpaaneHTaOro }~TA 
accaeltoaana pcaKRHa ~ern~paTax~n H~TIIBO~IHOrO cy~abqhaTa MeRH u nOKa3ano xopomee coana.rteHHe 
KHHeTHtI~KHX KOHCTaH'I" peagLIl, llt, OllpegleJlenHbiX pa3~l14tlHblMrl pactleTHhlMlt cnoco6aMH. 
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